일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- pytorch
- MachineLearning
- ResNet
- TorchHub
- 머신러닝
- CycleGAN
- 체비셰프부등식
- 마코프부등식
- GAN
- bayesian
- bayes
- SWEA #Python #알고리즘
- PRML
- ImageCaptioning
- Bayes'Rule
- 젠센부등식
- NeuralTalk
- Python
- Bayes'Theorem
- DeepLearning
- DeepLearing
- tensor
- AlexNet
- Today
- Total
euphoriaO-O
이산형 분포 본문
베르누이 분포 (Bernoulli distribution)
$p(x)=p^x(1-p)^{1-x}$, $x=0,1$, $0<p<1$
$\mu=p$
$\sigma=p(1-p$
$m(t)=[(1-p)+pe^t]$, $\infty<t<\infty$
이항 분포 (Binomial)
$p(x)= {n \choose x} p^x(1-p)^{n-x}$, $x=0,1,2,\cdots,n$, $0<p<1$
$\mu=np$
$\sigma^2=np(1-p)$
$m(t)=[(1-p)+pe^t]^n$, $-\infty<t<\infty$
기하 분포 (Geometric)
$p(x)=p(1-p)^x$, $x=0,1,2,\cdots$, $0<p<1$
$\mu=\frac{p}{q}$
$\sigma^2=\frac{1-p}{p^2}$
$m(t)=p[1-(1-p)e^t]^{-1}$, $t<-log(1-p)$
초기하 분포 (Hypergeometric)
$p(x)=\frac{{N-D \choose n-x}{D \choose x}}{N \choose n}, x=0,1,2,\cdots,n$
$\mu=n\frac{D}{N}$
$\sigma^2=n\frac{D}{N}\frac{N-D}{N}\frac{N-n}{N-1}$
음이항 분포 (Negative Binomial)
$p(x)={x+r-1 \choose r-1}p^r(1-p)^x, x=0,1,2,\cdots, 0<p<1, r=1,2,\cdots$
$\mu=\frac{rp}{q}$
$\sigma^2=\frac{r(1-p)}{p^2}$
$m(t)=p^r[1-(1-p)e^t]^{-r}, t<-log(1-p)$
푸아송 분포 (Poisson)
$p(x)=\frac{e^{-m}m^x}{x!}, x=0,1,2,\cdots, m>0$
$\mu=m$
$\sigma^2=m$
$m(t)=exp[m(e^t-1)], -\infty<t<\infty$
다항 분포 (Multinomial)
$p(x_1,x_2,\cdots,x_{k-1}=\frac{n!}{x_1!\cdots x_{k-1}!x_k!} p_1^{x_1}\cdots p_{k-1}^{x_{k-1}}p_k^{x_k}, x_k=n-x_1-\cdots-x_{k-1}$
$E(X_i)=np_i$
$Var(X_i)=np_i(1-p_i)$
$Cov(X_i,X_j)=-np_ip_j, i!=j$
$m(t_1,t_2,\cdots,t_n)=(\sum_{i=1}^{k} p_ie^{t_i})^n$
'Statistics > Mathematical Statistics' 카테고리의 다른 글
마코프 부등식 (0) | 2020.03.13 |
---|---|
연속형 분포 (0) | 2020.02.01 |
상관계수 (0) | 2020.02.01 |
적률생성함수 (0) | 2020.02.01 |
평균과 분산 (0) | 2020.02.01 |